Respuesta :
The Schwarzschild radius of the black hole depends on its mass
The Schwarzschild radius of this supermassive black holeis 0.091 AU
How to determine the Schwarzschild radius?
The Schwarzschild radius (r) is calculated using:
[tex]r_s = \frac{2GM}{c^2}[/tex]
Where:
G = Gravitational constant = 6.67408 × 10-11 m3 kg-1 s-2
M = Mass of the object = 4.6 x 10^6 solar masses
c = Speed of light = 299792458 m / s
Express the mass in Kg
M = 4.6 x 10^6 * 9.2 * 10^18 = 9.15 * 10^36 kg
Substitute the above values in the equation
[tex]r_s = \frac{2 * 6.67408 * 10^{-11} * 9.15 * 10^36}{299792458 ^2}[/tex]
Evaluate the expression
[tex]r_s = 13589425339.6[/tex] m
Express as km
[tex]r_s = 13589425.3396[/tex] km
Expressas AU
[tex]r_s = \frac{13589425.3396}{1.5 * 10^8}[/tex]
Evaluate the quotient
[tex]r_s = 0.09059616893[/tex]
Approximate
[tex]r_s = 0.091\ AU[/tex]
Hence, the Schwarzschild radius of this supermassive black holeis 0.091 AU
Read more about gravitational radius at:
https://brainly.com/question/4208016