Select the first correct reason why the given series converges.


a. convergent geometric series


b. convergent p-series


c. integral test


d. comparison with a convergent p-series


e. converges by limit comparison test f. converges by alternating series test e 1. ∑n=2∞n2+n‾√n4−4 f 2. ∑n=1∞n2+ln(n)n2−9n f 3. ∑n=1∞(cos(nπ))ln(6n) f 4. ∑n=1∞(−1)n7n+5 f 5. ∑n=1∞(−1)nn‾√n+4 c 6. ∑n=2∞4n(ln(n))2

Respuesta :

Answer:

E. Converges by limit comparison test.

Step-by-step explanation:

Here is something that might help you on this

https://study.com/academy/answer/select-the-first-correct-reason-why-the-given-series-converges-displaystyle-sum-n-1-infty-1-n-frac-sqrt-n-n-2-a-convergent-geometric-series-b-convergent-p-series-c-comparison-or-limi.html.